
NoobLab: An Intelligent Learning Environment for Teaching Programming

Paul Neve, Gordon Hunter, David Livingstone and James Orwell
Kingston University

London, UK
paul@kingston.ac.uk

Abstract— Computer programming is a highly practical
subject and it is essential that those new to the discipline
engage in hands-on experimentation as part of the learning
process. However, when faced with large cohorts and an
increasing demand for distance and student flexible learning,
incorporating this into a programming course can be difficult.
There is a dynamic that exists between tutor and student in a
real-world programming workshop session that is not easily
replicated online. In this paper we describe an online learning
environment that begins to create an analogue of this dynamic
and its successful integration into an undergraduate
programming module. Ultimately, the potential exists to not
only improve the student learning experience but also
investigate and inform programming pedagogy itself.

Keywords-component; computer programming; pedagogy;
e-learning; virtual laboratories; educational analytics

I. INTRODUCTION
The refrain of Jenkins’ students’ that programming is

“boring” and/or “difficult” [1] is all too familiar. Tutors
also face their own difficulties and drudgeries presented by
both logistical realities and the nature of the discipline.
Programming is a complex subject that cannot be taught
through explanation alone, a fact that informs
constructivist approaches to teaching the discipline. One
such approach is Wulf’s [2], which places the onus on the
student to learn through practical experimentation and in
collaboration with peers. Lecture-style teaching is reduced
to a minimum and the tutor’s role defined as a “guide on
the side”.

Unfortunately, practical considerations often intrude
upon the constructivist ideal, and the ease with which
conventional lectures can be delivered to a large cohort is a
compelling argument in their favour. A common approach
is to use lectures to establish concepts then follow up with
practical lab/workshop sessions. This is relatively simple
to manage, as a large cohort can attend one lecture then be
divided into smaller, more manageable groups for the
hands-on sessions.

It is important that a tutor or other expert be available
during workshops to guide students’ practical
experimentation. Guidance from a tutor will prompt a
reaction from a student: they might produce new code,
engage the tutor in a dialogue, or do something else
entirely. In turn, this reaction alters the tutor’s future
feedback particularly if the response was unexpected.
However, the dynamic between tutor and student goes
beyond the domain contingency [3] defined by David and
Heather Wood, lasting not for just a single engagement but
the duration of a workshop session, probably during a
module as a whole and possibly throughout their entire
relationship. It is a self-reinforcing cycle that we call “the

learning loop”, and is a key part of an effective
programming workshop.

Unfortunately, even if a large cohort is subdivided,
finding enough tutors to cover all the groups can be
problematic, and the quality of feedback during workshops
can be adversely affected. Large cohorts also introduce
problems with respect to assessment. Marking hundreds of
student submissions is extremely time consuming, so
course designers fall back on assessment strategies which
can be marked quickly and/or automatically. For this
reason multiple choice questions are often used, but these
must be carefully selected and/or constructed if they are to
genuinely assess a student’s ability. It is particularly
important to avoid the assessment becoming a “pop quiz”
on terminology trivia; for example, a question that offers
several definitions for a term such as “overriding” or
“overloading” does little to demonstrate an ability in the
student to actually utilise this knowledge in any practical
or useful sense. Students who achieve a good overall grade
in such assessments often remain utterly incapable of
creating an original program without assistance: the skills
and knowledge they need in order to pass bear no
resemblance to the skills required for real-world
programming.

Meanwhile, the demand for distance and flexible
learning is increasing, and such a mode of study does not
always lend itself to the real-time dialogue that is a crucial
part of the learning loop. These practical realities once
again interfere with the ideal pedagogic world.

II. THE PRACTICAL PROGRAMMING MODULE
Practical Programming is a second semester, first year

undergraduate module at Kingston University. It follows a
first semester module that uses Java to introduce
programming to complete beginners.

Practical Programming sets out three aims:
• To develop students’ enthusiasm for practical

programming,
• To enhance students’ experience with

programming environments,
• To develop students’ confidence in their ability to

write programs.
There are two occurrences of the module delivered

concurrently: one for Computer Science students and one
for Information Systems (IS) students. In 2011 half of the
IS cohort failed to achieve a passing grade even after
retakes had been taken into account. The IS module team
felt that changes had to be made, and in 2012 the decision
was made to redesign the IS occurrence, to switch from
Ruby to Javascript, and to make use of learning technology
to promote student engagement via flexible, self-paced
study.

!000111! IIIEEEEEEEEE///WWWIIICCC///AAACCCMMM IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceeesss ooonnn WWWeeebbb IIInnnttteeelllllliiigggeeennnccceee aaannnddd IIInnnttteeelllllliiigggeeennnttt AAAgggeeennnttt TTTeeeccchhhnnnooolllooogggyyy

!777888-­-­-000-­-­-777666!555-­-­-444888888000-­-­-777///111222 $$$222666...000000 ©©© 222000111222 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///WWWIII-­-­-IIIAAATTT...222000111222...222111888

333555777

A. The vision
Three key words were taken from the module aims to

inform the redesign process: enthusiasm, experience and
confidence, three things that students often lack when it
comes to programming. In discussing the difficulties of
integrating learning technology into a constructivist
learning context, Gance sets out several principles [4]: the
student must “cognitively engage” with their learning
environment; new learning should involve active
exploration of the environment; students should engage in
a “hands-on, dialogic interaction”; any practical exercises
should be “authentic in nature”; and a social component
should include dialogue with “mentors” and other learners.

 A constructivist approach was adopted that would
focus on practical programming activities and be based
around three overarching games programs. Abstract
programming problems would be avoided – activities that
did not directly involve the games would remain
“authentic” and involve a related skill or concept. Students
would be “cognitively engaged” throughout the module,
engaging in hands-on, programming tasks on a continuous
basis. Students would also be given a measure of control
over their assessment parameters so that success (the
definition of which differs between students) becomes an
attainable goal, promoting student motivation as per
Gregory and Jenkins’ [5].
B. Developing the learning environment

NoobLab was an existing learning environment for
programming already in use at Kingston University [6]. It
presented learning content alongside an area in which
simple Javascript-based programs could be composed and
run in a virtual console. A number of open source tools
were combined with bespoke code to create the
environment, the most important of which was Oni Labs’
implementation of Stratified Javascript, Apollo
(http://onilabs.com/apollo). This allowed infinite loops – a
common beginners’ mistake – to execute within the
environment without causing the host browser to hang.

The first iteration of NoobLab was designed to present
learning content and exercises designed to bootstrap
programming naïfs to a level where they could at least
understand basic programming terms and concepts prior to
undertaking a computing-related Masters degree. The first
iteration was tightly coupled to this content. It had no
facilities for assessment, and no ability to test students’
code against an exercise’s desired outcome, The
environment did not record the student’s code as they
worked, nor did it record any interactions with or feedback
from the environment. Ultimately it was a useful
preparatory resource but inherently limited.

Thus the first task was to decouple the tool from the
existing content, and introduce a more flexible means for
defining new content. Some consideration took place as to
whether to adopt an established standard for describing e-
learning content, such as eLML or CNXML. However,
these were rejected due to the fact that both have a steep
learning curve, and that editors available are limited.
Additionally, both standards would need to be extended to
accommodate functions such as automated testing of
submitted program code.

Consequently, the decision was made to use HTML,
but to add several semantic extensions to support the

context of programming pedagogy. The advantages of this
approach were twofold: those authoring content for a
computer programming course are likely to be familiar
with HTML; secondly, although any interactive aspect
would be dependent on the NoobLab environment, content
would still be at least readable in a conventional browser.
The most important of these extensions introduced test
criteria, which could be expressed either as a simple string
comparison against which program output would be
compared, or as Javascript code to be run after the
student’s own.

Figure 1 shows an example of how test criteria is
specified; here the student’s task is to write a function
called makex that returns a string of X’s of the length
specified in the parameter. The test case is expressed as
Javascript code that is run after the student’s, with a return
value set to true or false indicating test success. Although
the example shows a single test condition, multiple test
conditions can be used. Note that the extensions are
semantic and use the existing class attribute, so do not
invalidate the HTML specification.

Figure 1. Semantic extensions in HTML to support test criteria

The environment was also extended to gather data
about students’ navigation through and interactions with
learning content, e.g. moving to a new piece of content,
responding to a quiz question or pasting a code exemplar
into the editor. The environment would also log any code
that is executed and its outcome (e.g. a successful run,
syntax or runtime error), and a difference index based on
Levenshtein’s algorithm [7] which indicates how much the
student’s code has been altered between runs. If code is
run against test criteria, the level of success against the
criteria would also be logged.

Index Timestamp Action Location Data
47 09:59:00 2012/02/06 RunStart CI1152B:1:7 0
48 09:59:03 2012/02/06 RunUserInput CI1152B:1:7 Paul
49 09:59:03 2012/02/06 RunSuccess CI1152B:1:7
50 09:59:15 2012/02/06 TestStart CI1152B:1:7:firstIf 0
51 09:59:15 2012/02/06 TestFailed CI1152B:1:7 2/3
52 10:01:29 2012/02/06 RunStart CI1152B:1:7 4
53 10:01:31 2012/02/06 RunUserInput CI1152B:1:7 PAUL
54 10:01:31 2012/02/06 RunSuccess CI1152B:1:7
55 10:01:32 2012/02/06 TestStart CI1152B:1:7:firstIf 0
56 10:01:33 2012/02/06 TestPassed CI1152B:1:7

Figure 2. An excerpt from the NoobLab usage logs.

Figure 2 shows a log excerpt from the implemented
system, taken during a practical exercise where the student
was tasked with creating a program to do a case insensitive
comparison of two strings. In index lines 47-51 the student
believes they have a correct solution. It runs without
syntax or runtime errors, but is logically flawed. Thus in
lines 50 and 51 they attempt to test it against the test
criteria, and it fails. In line 52 we see a second run attempt.
In this line, the Data column indicates a Levenshtein
difference index of 4. Upon the second test attempt in lines

333555888

55-56, the code passes the test criteria. Thus we can
conclude that the changes made by the student at line 52
were the ones that successfully solved the exercise task.

Figure 3. The NoobLab Environment.

Figure 3 shows the user interface that the student sees.
The basic, static material for a given piece of learning - “a
lesson” – is shown on the left hand side. In many respects
this can be considered analogous to the lecture component
of the dual lecture/workshop pedagogic model discussed
previously. It incorporates exemplar code, images, videos
and quiz questions. On the right hand side the student can
modify and run code, which, along with the practical
exercises and test criteria specified as part of the learning
content, form an analogue of the workshop component.

C. Course and assessment design
The three games chosen were Hangman, Tic-Tac-Toe

and Connect 4. Each of these was intended to present an
increasingly challenging programming task. Completing
Hangman and making a good start on Tic-Tac-Toe would
achieve a basic pass but to achieve a high grade all three
games had to be at least attempted if not completed.
Students were encouraged to be strategic about where they
focused their efforts, which became their method of
controlling their assessment. Effectively, students self-
selected ability groups, similar to Jenkins and Davy [8],
and Davis et al [9]. Weaker students could focus on a
simple implementation of one of the easier games; stronger
students could flex their muscles and create something
more impressive or tackle more of the games.

Marks were awarded to discourage plagiarism and
encourage regular engagement. Up to 30% would be
awarded for the games programs ultimately submitted but
50% would be awarded for a “Big Test” during which
students would be expected to make alterations to the three
games under examination conditions. This had a similar
difficulty-banded approach, with 9 activities, three for each
game, and each activity within a game increasing in
difficulty. Once again, students could select activities that
best fit their ability level and control the parameters of
assessment, but ultimately attain a mark appropriate for the
effort and expertise demonstrated. Students who chose to
focus on Hangman would achieve the similar, bare-pass
level as those who chose to do a selection of “easy”
questions across all three games; students who completed
the harder Connect 4 or selected a range of harder
questions across the games would do much better.

The final component of assessment consisted of
fortnightly “Small Tests”, 4 in total, each worth 5%.
These were presented not as regular examinations but as a
means by which students could be credited for their week-
to-week efforts. Although these were not specifically
associated with the coursework games, they were
deliberately designed to allude to them, e.g. adding items
to a Tic-Tac-Toe-style 3x3 grid. Despite Jenkins’
argument against continuous assessment [1], it was felt
that deferring assessment until the end of a module risks
students disengaging until final assessment is upon them –
by which point they have little chance of catching up.

D. Course delivery
There were two scheduled sessions lasting two hours

each per week. In the previous version of the module this
involved a lecture followed by practical workshop, but the
boundaries between the two were deliberately blurred in
the module redesign. In the redesign, the morning session
opened with an overview of any interesting developments
that arose from the previous week’s activities, followed by
a short introduction to the current week’s learning
material. This took approximately 15-20 minutes, after
which students were expected to embark on a self-paced
exploration of new material presented within the NoobLab
environment. This included formative practical
programming exercises against which the student could
run embedded NoobLab test cases, and thus get immediate
feedback on their work. The afternoon session was billed
as optional, and students were given the choice to attend if
they felt they needed to. In order to discourage students
retreating entirely into the virtual world and becoming
solitary in their learning, the tutor would roam and act as a
“guide on the side”. While the environment would provide
the majority of feedback, the tutor would observe, interject
and offer commentary, but would also return to the lectern
and engage the group as a whole whenever an interesting
discussion point emerged from students’ activities.

III. RESULTS
Although two staff members were allocated to the

scheduled sessions, it was common for one of them to
leave before the end simply because they were not needed
– students received much of the required feedback directly
from the environment itself. Thus the use of the
environment had a positive effect on human resource
requirements, and provided some elements of the learning
loop.

Just as with the formative exercises, Small Tests were
also framed as NoobLab test criteria, and this simplified
the marking process considerably. A student receiving
what came to be known as “the green box of success” from
the environment could be awarded full marks, with no
further examination of their work required. Usually this
was also the case for near misses, with only submissions at
the weaker end of the spectrum requiring human
assessment to determine whether some partial credit was
merited. In most cases, students received their marks for a
Small Test on the same day it was sat.

Based on the 46 students who completed more than
half the summative tasks, 78% of them achieved a passing
grade. At the module’s conclusion, students were given a
series of positive statements about the NoobLab

333555!

environment and the module as a whole. They were asked
to assign a mark where 6 indicated strong agreement and 1
indicated strong disagreement. For each assertion, a
“satisfaction index” was generated, based on the total score
expressed as a percentage of the maximum possible score.
The assertion “I did better at this module than I expected
to” scoring a high satisfaction index of 83%. There was a
noisy but significant correlation (R = 0.749, p < 0.001)
between time spent in the NoobLab environment and a
student’s final mark. Further investigation of two of the
outliers (see Figure 4) also yielded interesting results, with
one proving to be a student with prior Javascript
experience, whereas the other had “crammed” for the final
Big Test but done very little work beforehand.

Figure 4. Final mark against total time spent in NoobLab environment

General feedback was very positive. The NoobLab
environment scored extremely highly, with related
assertions averaging over 90% Additionally, the
environment was repeatedly cited in the free text question
“what was the best thing about the module?” and often
praised in other free text responses. Students were also
complementary towards the module structure and delivery
approach. Contrary to Jenkins’ objections to continuous
assessment [1] the assertion “it was a good idea to have
regular Small Tests” scored an extremely high satisfaction
index of 94.12%. Small Tests also had a positive impact on
the attendances of the optional sessions, and in their
immediate aftermath there was a clear increase in
formative usage of the learning environment.

IV. RELATED WORK
Some commonalities exist with previous research

and/or tools. RoboProf [10] can assess code against test
criteria and also logs students’ usage, but is restricted to a
simple comparison of program output against a set of test
data and lacks the seamless presentation of NoobLab.
InSTEP [11] presents code editing facilities alongside
associated learning material, but is limited to exercises
based around small modifications to templates. ASAP [12]
provides comprehensive testing capabilities, and could be
integrated with a web-based code editor, but is primarily
concerned with assessment and lacks the immediacy of
NoobLab’s feedback. Coursemarker [13] assumes the
student has access to a functional compiler which does not
lend itself to supporting beginners or distance learners. The
online version of Havebeke’s Eloquent Javascript [14] has
a browser-based editor similar to the first iteration of
NoobLab, but equally has similar limitations.

A key difference is that the NoobLab/Practical
Programming combination adopts a more holistic approach
where both course and technology design has been part of

an integrated process, and one has informed the other.
Arguably the same could be said about CodeAcademy
(www.codeacademy.com). This uses gamification [15] and
adds social components to create an immersive, engaging
learning experience, with a similar approach to expressing
test criteria to NoobLab. Their social focus is also very
much in keeping with Gance’s 4th principle [4]. However,
by its very nature CodeAcademy targets the public as a
whole; one cannot limit a course to a specific institution or
cohort. Although proponents of the Open Educational
Resource movement might consider this a good thing,
institutional regulations and requirements could be
incompatible with this position. Additionally,
CodeAcademy does not provide a means for tutors to
access the detailed level of usage data as that stored by
NoobLab. This is expected to be a crucial resource in the
progression towards a more complete automated
implementation of the learning loop.

V. FUTURE WORK
After the successful deployment on Practical

Programming, this approach and the NoobLab
environment will be rolled to other programming modules,
particularly those targeted at beginners. One possible target
module is called Fundamentals of Programming Concepts,
and among other learning outcomes seeks to establish the
skill of decomposing a programmatic problem into its
constituent parts. In the past students have been presented
with logical problems for which they must express a
solution in pseudocode. However, students find what is
essentially “programming on pen and paper” tedious and
struggle to understand its relevance. To make the activities
more akin to “real” programming, some of these activities
were reformulated as tasks that can be solved using a BBC
Basic interpreter. The integration of a BASIC interpreter
within NoobLab would be a logical next step.

A more innovative approach might be to make
problems and exercises more visual in nature, as per Pattis’
Karel the Robot [16], and particularly later projects that
wrap a modern “host” language around the Karel
command set [17]. Such exercises can seem like
recreational puzzle solving, but this approach mean that
students begin learning the syntax and some foundations of
a real-world language before they are actively conscious of
doing so.

There is also a demand for NoobLab to support other,
“real world” languages for modules beyond beginner level
and where course content becomes language specific. Java
is emerging as the most urgent requirement in this regard.
Other requirements have been articulated to provide
facilities that ease the burden of summative assessment
and feedback, particularly for large cohorts.

A. Patterns and programming pedagogy
The importance of the logs that are gathered by the

environment cannot be overstated, as they can be inspected
manually and/or analysed quantitatively to obtain insights
into both individual students and general trends. Perhaps
the most exciting area for future work lies in analysis of
patterns within these statistics.

Consider the pattern “run program” followed by
“syntax error” repeated many times, with little or no
difference in the code between run attempts. We call this

333666000

the “SOS Pattern” - a student unable to make the jump
from error message to diagnosis, and who is desperately
hoping that the problem will go away on its own. A logical
extension would be for this pattern to trigger the display of
material related to debugging techniques and interpreting
error messages.

The SOS Pattern is commonly observed in those new
to programming, and is thus easily predicted. However, a
more thorough analysis of the statistics will likely yield
other patterns that are common across students. Statistical
pattern recognition approaches and data visualisation
techniques will be used to identify “clusters” and/or
“signatures” across learners. Visualisation of students’
routes through learning material and formative practical
exercises has already exposed another pattern, the “Rosetta
Stone”. This is seen in students having difficulty with a
practical exercise who, upon revisiting a certain part of
learning material, are then able to complete the exercise. It
is only a short jump to suggest that future students who
struggle with the same exercise should be automatically
directed by the environment to the associated Rosetta
Stone material.

 Using these signatures to prompt unsolicited,
impromptu feedback would permit the implementation of a
richer, more “intelligent” analogue of the learning loop.
Signatures could also be used to inform pedagogy, course
design and student management. For example, a student
who is exhibiting a pattern that previously resulted in a
negative outcome could be flagged for remedial action, or
an exercise that is causing difficulty for many students
could be flagged for review.

VI. CONCLUSIONS
The use of online delivery and automated assessment

tools can greatly enhance the learning experience in
computer programming courses. If used correctly, these
tools can deliver flexible, self-paced learning in a
discipline that is fraught with difficulties both pedagogic
and logistic.

It is possible to design an online learning environment
for programming that is in keeping with a constructivist
pedagogic philosophy. A holistic approach is key – the
design of the technology must proceed hand-in-hand with
the design of the pedagogy and course content as a whole.
The learning experience must be integrated, with no
sudden jumps between different modes of study – the
experience should be as consistent as possible regardless
of whether a student is simply reading through material or
actively engaged with a practical exercise. When this
approach was used on a first-year undergraduate
programming module, student feedback was
overwhelmingly positive. The merits of this approach
would also seem to be confirmed by the increasing
popularity of the CodeAcademy website.

However, the true potential of this research lies not in
improving delivery of programming courses, or making
material more engaging. By using the statistics gathered
from students as they work to drive feedback, and
specifically, common patterns or “signatures”, a closer
analogue of the learning loop that exists between a human
tutor and student may be implemented. Ultimately, one
might envisage a truly adaptive learning environment for

computer programming, that has the capability to learn and
adapt to each student, advising them and providing
feedback not only upon request but also based on
impromptu “observation” of their work, just as a roaming
human tutor might during a physical, real-world workshop
session.

VII. REFERENCES
[1] T. Jenkins, “On the difficulty of learning to program”, 3rd Annual

Conference of the LTSN Centre for Information & Computer
Sciences, Loughborough, U.K., 2002, pp. 53–58.

[2] T. Wulf, “Constructivist approaches for teaching computer
programming”, 6th Conference on IT Technology Education,
ACM, Newark, USA, 2005, pp. 245–248.

[3] D. Wood and H. Wood, “Vygotsky, Tutoring and Learning,”
Oxford Review of Education, vol. 22, no. 1, Carfax Pub. Co,
Oxford, U.K., pp. 5–16, 1996.

[4] S. Gance, “Are Constructivism and Computer-Based Learning
Environments Incompatible?” Journal of the Association for
History and Computing, American Association for History and
Computing, Oregon, USA, 2002.

[5] T. Jenkins and P. Gregory, “Motivating Computing Students,” in
Effective Learning and Teaching in Computing, RoutledgeFarmer,
London, UK, 2004, pp. 21–28.

[6] P. Neve and D. Livingstone, “NoobLab: An online workshop
environment for programming courses” in Quality enhancement in
learning and teaching: How Kingston University is improving the
student experience, Kingston University, Surrey, UK, 2011, pp. 52–
53.

[7] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, 1966, vol. 10,
pp. 707–710.

[8] T. Jenkins and J. Davy, “Dealing with diversity in introductory
programming,” in 1st Annual Conference of the LTSN Centre for
Information and Computer Sciences, Edinburgh, UK, 2000, pp. 81–
87.

[9] H. C. Davis, L. A. Carr, E. C. Cooke, and S. A. White, “Managing
diversity: Experiences teaching programming principles”. 2nd
Annual Conference of the LTSN Centre for Information and
Computer Sciences, London, U.K. 2001.

[10] C. Daly and J. M. Horgan, “An automated learning system for Java
programming,” IEEE Transactions on Education, vol. 47, no. 1,
IEEE, pp. 10– 17, Feb. 2004.

[11] E. Odekirk-Hash and J. L. Zachary, “Automated feedback on
programs means students need less help from teachers,” 32nd
SIGCSE Technical Symposium on Computer Science Education,
New York, NY, USA, 2001, pp. 55–59.

[12] C. Douce, D. Livingstone, J. Orwell, S. Grindle, and J. Cobb, “A
technical perspective on ASAP–Automated System for Assessment
of Programming,” 9th Computer Assisted Assessment (CAA)
Conference, Loughborough, U.K., 2005.

[13] C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas,
“Automated assessment and experiences of teaching
programming,” Journal on Educational Resources in Computing,
vol. 5, no. 3, ACM, New York, USA, 2005.

[14] M. Haverbeke, Eloquent JavaScript, No Starch Press, California,
USA, 2011.

[15] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game
design elements to gamefulness: defining ‘gamification’,” 15th
International Academic MindTrek Conference, MindTrek
Association, New York, NY, USA, 2011, pp. 9–15.

[16] R. E. Pattis, Karel the Robot: A Gentle Introduction to the Art of
Programming. John Wiley & Sons, Inc. New York, NY, USA,
1981.

[17] B. W. Becker, “Teaching CS1 with Karel the Robot in Java,”
SIGCSE Bulletin, vol. 33, no. 1, pp. 50–54, ACM, New York,
USA, 2001.

333666111

